Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Molecules ; 26(10)2021 May 20.
Article in English | MEDLINE | ID: covidwho-1248002

ABSTRACT

Diabetes mellitus (DM) is a chronic disorder and has affected a large number of people worldwide. Insufficient insulin production causes an increase in blood glucose level that results in DM. To lower the blood glucose level, various drugs are employed that block the activity of the α-glucosidase enzyme, which is considered responsible for the breakdown of polysaccharides into monosaccharides leading to an increase in the intestinal blood glucose level. We have synthesized novel 2-(3-(benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides and have screened them for their in silico and in vitro α-glucosidase inhibition activity. The derivatives 11c, 12a, 12d, 12e, and 12g emerged as potent inhibitors of the α-glucosidase enzyme. These compounds exhibited good docking scores and excellent binding interactions with the selected residues (Asp203, Asp542, Asp327, His600, Arg526) during in silico screening. Similarly, these compounds also showed good in vitro α-glucosidase inhibitions with IC50 values of 30.65, 18.25, 20.76, 35.14, and 24.24 µM, respectively, which were better than the standard drug, acarbose (IC50 = 58.8 µM). Furthermore, a good agreement was observed between in silico and in vitro modes of study.


Subject(s)
Acetamides/chemical synthesis , Acetamides/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Thiazines/chemistry , Thiazines/pharmacology , Acetamides/chemistry , Acetamides/therapeutic use , Computer Simulation , Diabetes Mellitus/drug therapy , Drug Evaluation, Preclinical , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/therapeutic use , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Inhibitory Concentration 50 , Molecular Docking Simulation , Structure-Activity Relationship , Thiazines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL